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ABSTRACT

Approximation of set-valued functions is introduced and discussed

under a convexity assumption. In particular , a theor em of Korovkin

type is derived for a class of approximation methods.
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SIGNIFICANCE AND EXPLANATION

About ten years ago, Ti. Grenander of Brown tJniversity proposed thatit should

be possible to create a theory of patterns or shapes. Such theory would have

applicability in pattern recognition and classification, which is, for

• 
example, of great importance in the utilization of computers in biological

and medical research.

A particular aspect of this endeavor is the approximation of shapes in

the plane or in three—space by simpler shapes, e.g., by balls or ellipsoids

or other simple geometric configurations which depend only on a, few para-

meters. As an outgrowth of this, one might want to so approximate a shape,

such as a tumor, as it varies in time, thus producing a simple shape which

varies with time or, a set—valued function of time.

A set—valued function is considered here to be a map which takes E0 ,l]

into the compact subsets of ]Rd . A definition of continuity can be invoked,

and this raises the question of approximation: can a given set—valued

funëtion be approximated uniformly by a “simpler” one (chosen from a given

family). Borrowing well—understood techniques from classical approximation

theory, we show some of the possibilities.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC , and not with the author of this report. 
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APPROXIMATION OF CONVFX SET-VALtJEP FUNCTIONS

*Richard A. Vitale

1. Introduction. Let ~( denote the collection of non-~nipty, compact subsets of

• With the introduction of the Hausdorff metric , given by

(1.1) h(K
1
,K
2
) = inf{c > O~K1 

C K
2 

+ cB , 1(
2 ~ 

+ €B}

• IC can be regarded as a complete, separable, and locally compact metric space. Here B

is the closed unit ball in fl~ and addition and scalar multiplication of sets are

defined in the usual way .

A set—valued function F is a map from (0,1] into IC. Such maps (and more

general versions) arise in a variety of contexts, includ ing optimal control theory ,

mathematical economics, and probability theory . Analytical investigations have followed

several lines, including the construction of a differential—calculus (see , for instance,

Artstein [2), Aumann (4], and Matheron (8]) and th~ investigation of selections, namely

vector—valued functions f (0,1] -* such f(t) € F(t) for each t (Wagner [18]

• provides an extensive survey of this area)

Our purpose here is to present some initial investigations into the possibilities

of an 
~~Eroximation theory for set-valued functions . We take our lead from traditional

notions and begin by posing the question , is it possible to approximate a given F by

a ‘simpler” one? More concrete1~’, we may look for linear approximants of the form

(1.2) ~ ,K , ~~ K + + ~ K
j=O J 0 0  n n

where the K . are fixed elements of IC and t~ e ~~~ , are scaler valued maps defined) 3

on (0,11. A new ingredient in this classical formulation is that (1.2) must be treated

with some care in combining terms. Note that although {O~ is the identity for

• addition of sets, i.e.,

generally no additive inverse exists (one can easily verify that K + 1( • {0} cannot

*Current Addreso : Dept. of Mathematics, Claremont Graduate School , Claremont , CA ~l7l1.

Sponsored by the United States Army under Contract No. DAAG29-75—C—0024 .
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be solved for 1(1 unless K reduces to a point). Moreover , the distributive law

11( + BK (a+B)K

- 
. generally fails to hold (consider , for instance, the case when K {o,i } C J~j. It is

true that a restricted version of (1.2) holds for convex IC, namely

4 (1.3) OK + BK = (ci+B)1( for a,B > 0

This suggests that the class of convex—valued F may be an appropriate place in which

to begin considering approximation, and we will devote our discussion to this case.

- An outline of thedeve1~ oment is as follows. In section 2, we present notation and

generally well—known preliminaries. We take up Bernstein approximation in Section 3 to

U show the possibility of uniform approximation by linear approximants of polynomial type.

We then make a brief excursion into the non-convex case. Section 4 presents our main

result — of Xorovkin type — on positive, linear operators- In Section 5, we return to

Bernstein approximation to examine some of its other features.

—2— 
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2. IC . We denote by 1K the collection of elements of IC which are also convex. U
C

We summarize some properties of 1K which can be found in standard references (see, for

instance , Eqgleston [7], Rockafellar [101, and Valentine [141).

U is closed under addition and scalar multiplication of sets and enjoys the
U 

distributive property (1.3). IC inherits its metric from 1K as a closed , separable,

U and locally compact subspace . Given an element IC, we may form its convex hull , which

is in I C .  The map K -~ con K is continuous and satisfies additionally

con(c*K
1
+8K

2) = a con K
1 

+ B con

for -i ,8 > 0.

U To each K € IC is associated its support function, given by

(2.1) s(p,K) = max{p.klk e K)  p  e ~ d 1~ t l = 1 .

One may consider the support function to give a convenient parameterization of the family

of supporting hyperplanes to a Set. A Set K € IC and a point  not in K can always

be sepa rated by some hyperplane , a nd this leads to the useful equivalence

( 2 . 2 )  K1 E K2 < >  s(p , K1
) < s(p , K~ ) Vp

and consequent uni queness of support functions

K1 K~ < >  S(p , K1
) = s (p , K 2

) Vp

As a function of p, s(p,K) is continuous; indeed the Schwarz inequality , together

with (2.1), yields the uniform bound ls(p 2,K) - s(p
1
,K)l < li p 2 — p1 11 II K 1I . Here we have

used the symbol [iK~ to denote the norm of K which is equal to max{lI k iiI k E K) and ,

equivalently, d((O),K).

Evidently we may use the map K ‘~~ s(’,K) to embed IC in the Banach space Bd

of continuous functions defined on the surface of the unit ]Rd ball. Important structure

U is preserved under this mapping:

( 2 . 3 )  g ( .  ,~~1() = as( ,K) a ~ 0

(2.4) 
~~~

‘
~~l~~ 2> S( . K~~) + ~~~~

(2.5) h(K 1
, K 2

) Is 1 — 52 11 (uniform norm)

(11 1 ( 11 “ lI S (- , K ) Il )

• . •
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Let us indicate briefly how (2.5) comes about: The support function of B is identically

1 so that (2.3) and (2.4) imply s(p,K
2
+~B) = s(p,K2

) + ~~. Together with (2.2) this

yields K
1 
C 

~2 
+ EB iff

s(p,K
1
) < s(p,K~) + c for all p

The analogous expression holds iff C iC
i 

+ eB. For both inclusions to hold, we must have

(2.6) s(p,K1) — s(p,K2) I  < e for all p

• Th~ infirnuzn of all e > 0 satisfying (2.6) is at once h(K1
,K
2
) and - s2~ 

(see

(1.1)). Taking in particular 
~2 

= (01 yields II K II = IIs ( ,K)II .

-t Q[1K] and ~E (1K ] will denote the spaces of continuous maps into IC and respec-

tively. Given a map F € ~ [iK] we denote the norm of F by

11(F) = su p{ IIF(t ) It I t e  [0,1])

and define the related metric by

H(F,G) = sup{h(F(t),G(t)) It € [0 , 11)

—4—



-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~ • r~~~~~~~~~~~~~~~~~~~~~~~~~~~’rr r— - -- - -•-—,-~-- - — - -~~.-. - -~.-- - -~~~~~~~~~ ‘ ----.5 ,

3. Bernstein Approximation. Given a set—valued function F, we define its

Bernstein approximant to be

B (F;t) = b . ( t ) F (j / n ) , b . ( t )  = (~ ~J (l~~~)n J
n 

j=0 
jn 3n IJ

It is straightforward to show that this map necessarily lies in ~ [1K ) and, indeed , in

~ []K I if F E  ~ [IC 1.
C C

Theorem 1. Let F E  ~ I I C  1.  Then , as n • , B (F;) converges uniformly to F (i.e.
C n

• H(F,B (F;)) ~ 0).

Proof. We use the Banach space embedding. F € is equ ivalent to the continuity of

the map from [0,11 into Ed given by t~+ s(.,F(t)). Likewise , a Bernstein approximant

of F corresponds to the map t ~ b . (t)s(~ ,F(j/n). Hence, it is enough to show 
U

• j=0 ~
• the uniform convergence (in E

d) of the latter maps to t i+ s(~ ,F(t)) - This follows

directly from classical arguments (see , for example , Davis [5] transposed to a Banach space

setting). 0

• In section 4, we shall view this result from a more general perspective. For now , ict

us turn to the case when F E ~ []K ) does not necessarily have convex values . Of course.

• this does not preclude ferrning B (F;) and , indeed, as we shall see, Bernstein approxima-

tion asymptotically convexifies ” F.

Let us digress for a moment to consider a simple example. If K = {0,l} C 1R1, then

K = [K + K + ~~~~~ + K) = ~~~~~ 1)
~ j=O n 

••__~• _ _~~ 
n n

and hence h(~ •~~~~ 
K , con 1< = [0,11) -

~ 0 as a -
~ . This “filling in” of values is

typical of what happens when non—convex sets are summed . The fol low ing resul t  quan t i f i e s

this behavior .

Proposition ( Shaploy-Folkman;  see Arrow and Hahn [1 , p. 3 9 6 ) ) .  Let K . E IC , j = 0 ,1, . . ,  n ,

be such that 1k 1 11 < M. Then

n n I
(3.1) 

h( ~ 
K • , con K .

j 0  ~ j=0

—5—
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We use this result to investigate the non-convex case.

ITheorem 2. Let F € C E I C I .  Then in any subinterval  [i , l - i 1,  0 < £ < ~~~, B (F;)

converges un i formly  to con F.

- - 
- 

Proof. With

B~ (F;t) = 
•
~~~~ 

b
jn

(t)F(i/n)

we identify K . = b . (t)F(j/n) in (3.1). Now
3 Jn

I t K ~I I ~ I I F ( i / n )  II I b ~~R) I < H(F) sup (b . (t) Ic < t < 1 — £ ,  j = 0 , 1 n}

The indicated supremuni can be shown to be O(n 2) so that by the proposition

1 1

h(B (F;t) , B (con F;t)) <H(F) O(n 2)d
2

Theorem 1 applied to R (con F;) and the triangle inequality yield the assertion. 0

We remark that the result cannot be extended to the fu l l  interval si1
nce at each end-

point, t = 0,1, B (F;t) = F(t) independent of n. Moreover, the o n 2) bound breaks

• - down at the end-points.

The convexification of F by Bernstein approximation is undoubtedly related to

theories of integration of set—valued functions , which invariably yield integrals with

convex values. It would be of interest to make this statement more precise via a general

investigation of the behavior of linear operators on set—valued functions. We shall

not consider this problem here but instead present another example which shows the

difficulty of formulating approximation methods in the non—convex case.

Let F(t) (0,11 be approximated by a piece—wise linear scheme

[F (t) = ((nt~~+1—nt) F(i-~~J) + (at — (ntj) F(~~~
tJ + 1) 

~ < t < 1

(3.2)

= F(l), t = 1

Here F (0) F (1) 1 {0,l} , whereas the sequence
n n

F C t )  = {0 , nt — Int i , Intl + I — nt ,1}
n

even fails to converge for any t € (0,1).

—6—
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4. A Korovkin Result. Using (2.2) and the positivity of Bernstein approximation of

real-valued functions , we see that for F,G € C l I C  1
C

F C G ( tha t is, FIt ) C G(t) , Vt) >B  (F;) C H (G;) Vn -
— — n — n

As in the real case , th i s  suggests that a wider class of approximation methods may possess

similar convergence properties. Let us agree to call a map T : C ( I C ] -
~ ~ I1K )

• 1K —linear if T(aF÷BG) = oTT + BTG , a , B > 0 and 1K -positive i f  F C G TF C TG

( note that the d e f i n i t i o n  of l i n e a r i t y  is restricted to the na tu ra l  form for convex s e t s) .

We then have the following Korovkin resul t  for such maps .

Theorem 3. Let (TI be a sequence of IC
c
_linear . IC —positive maps. In order that

- T~F • F for each F € C[IK], it is necessary and sufficient that

( i ) T F ~~~ -+ F~
’
~ i = 0,1,2 where ~~~~ (t) = t

1
B

and

• (ii) sup{H (T F,F) I F t  I K , II K II = l} -* 0

• . Let us remark briefly on the hypotheses of the theorem before proceeding . Condition ( i )

is reminiscent of the vector—valued formulation and is perhaps even more striking here

• in that only a fixed ~~~~~ (i.e. B, the closed unit ball) is involved . Condition (ii)

asser ts  that  the ‘I behave un i fo rmly  well  when applied to “constants” ( includ i ng the

U 
case F = F~

°1 from Ii)).

Necessity of the conditions is the more direct implication to verify : (i) IS

obvious. As for ( i i ) ,  suppose the contrary.  Then there is an r ~ 0 and a sequence of

K such that H ( T  K ,K ) > r (here we have abused notation slightly to let Kn. n • n . n . — n.
3 3 3 3 3

stand for F where F (t) I K ) . Local compactness of 1K and the uniform
n . n. n . C

7 3 7
normalization II~ II = 1 assure the existence of a convergent subsequence of the K

Without loss of generality , suppose that K -~. K .  Then by the triangle inequality ,

• HIT K ,K ) < H ( T  K ,T K ) + H ( T  K ,K ) + H (K ,K
n n  n — n f l  n =  n~~ n

Now = H ( K ,K ) • 0. Moreover , the twin inclusions
n = n

K C~~ + C S
f l —  ~ a

CC C K  + B
n — f l  n

—7— 
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• together with the properties of T imply

T IC C T K  +~~~ T B• n f l —  n~ n n

and

T IC C T K  + c T B
—

so that H(T K ,T K ) < C H ( T  B) -
~ 0. Hence u r n  H ( T  IC ,K ) > c , but this

- n n  n — n n — n~~ = —

- violates our assumption.

The proof of sufficiency is more involved and w i l l  requ ire some preparation. We

U 
begin by formulating a quantitative Korovkin result for families of real—valued func-

- 
tions. This will then be adapted to our needs by invoking the Banach space embedding .

Let P be an indexing set and let I denote the collection of all a = (a ), p € P .

Here we have denoted by (a >  an equicontinucus family of real—valued functions

• defined on (0 ,11. That is , g iven a = (a > , each a e C[O,1) andp p
Ii) ~ M such that supIlo ll ~~M0 

< =

(ii) The modulus of continuity w (t i ) = sup sup jo (t) — a (xl I
I t-xIs ~ 

p p

satisfies ~o (0+) = 0.

E is a normed linear space under the def ini t ions

(1) (2) (1) (2)aa +~~ a = (aa +Bo I
p p

and 
U

t a l l  = sup suplo ( t ) I -

t p p

Moreover , we can define a partial ordering by -
•

(1) 
~

( 2 )  
< >  ~

( 1) 
It) ~ ~

(2 )  
Ct )  Vp € P , Vt € (0,1) -p — p

Now let us consider a subspace C I and a map L : -
~ I. We say that L is

l inear  if L(ao  1 +8012)) = aLc,~~
1
~ + BLa 121 and positive if 

(1) .< (2 )  
~~ ‘ Lo~~~

1 .<
For convenience, we call fu l l  if the fol lowing conditions hold

Ci) For i = 0,1 ,2, € where a Ct) t’ Vp € P, Vt € 10 ,1] (note that,

since I is a subspace, this implies that a € I where

= (t—x) 2 Vp € P, Vt € (0 ,1), x € [ 0 ,1] fixed) .

—8— 
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( i i )  If a = ( a )  € Eo~ 
then for each f ixed x E (0,11,

a € I where a ~t) = a Cx ) Vp e P. Vt € [0,11
Cx) 0 (x) p p

(loosely, lo must contain enough constants).

Finally, we define

(4.1) y(a,L) = sup supliL (t)0J
p
(t) — O

p
(t)~ -

We are now prepared to state a uniform bound.

Proposition. Let be full and let L : -
~ I be a positive, linear map. Then for

each ~~

— Lall .~.w0th )L II L0aII + 1) ~ y(a,L)

where 
2 

= sup sup l EL 
( J

a] (x) I

Proof. We follow an argument of Shisha and Mond [13], who have developed a

similar quantitative estimate in the case where P has a single element.

• . Fix a = (a I € I . Then, for each PC  P and ~ > 0,
p 0

a Ct) - a CXI I < w (
~)1l + 

(t-x)2

I’ P ° L
Consider one of the two associated inequalities , for example ,

0 (t) < w (~ )[l + 
(t_x) 2] 

+ 0 (x)

Regarding x as fixed , we see that this is equivalent to

0 .<~~~(~ )[o + 
~~~ [x]°] 

+ (x)
0

and hence

La ~ w (~ )[L o° + L 
(xl O] 

+ L (x)°

The opposite ordering is similar. We take p
th 

components evaluated at x and

combine the two resulting inequalities to get

I (Lo 1~~(x) - IL (x)°1 p~~ 
I 

~~
. w0

(~ ) (I L 0
0] (x) + -4 IL 

~
a] Cx)

By assumption ,

—9-
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Il L a) Cx) - a (x ) I < y(a,L)
Cx) p P —

and two applications of the tria-~g1e inequality yield

1 (La ) Cx ) — O C X )  I i w 6 )~~[L 
~
aJ (XI I + .4 I lL  

~~~~
01

~~~~
1
~~~~~~ 

+ y(ø,L)

Taking sup sup on each side yields

La — alt < w C6)[IIL 0O II + ~~~ ~2] + y(a ,L)

-
• If p > 0, we take 6 = p and are done. If p = 0, then a limiting argument (see (131)

similarly yields the assertion. 0

Corollary. Let be full and , for each n 1,2 let Ln be a positive, linear

map taking E~ into I. If L
n ~ 0 for i = 0,1,2, then, for each a €

y(a,L ) 0 implies L a -~ a.

Proof. In view of the proposition, we only have to show that = sup s U p I ( L  
t x i

0]
p

4 0

Note that each component of tx ) 0 is t
2 

— 2xt + x 2 (here t is the free variable)

or equ ivalent ly

a =  a - 2 x a + X 2 a .ix]  2 1 0

We apply L ,  take ~th components , and evaluate at x:

(L a) (xl = EL a) Ix) — 2x(L a] (x) + x2[L a) Cx) -n ix)  p n 2  p n i p  n O  p

Adding and subtracting 2x2 appropriately on the right and taking absolute values yields

the bound

(4 .2 )  I(L~ ~~~~~~~~~ 
~~. IL 2a] (x) — x2

1 + 2 1 [ L  1a] (x) — x l

+ EL a) (xl — 11n O  p

Operating with sup sup on each side of (4.2) then gives

u 2 < Il~~ 2
0 — 

2011 + 2 I I L  1
0 — loll + I l L ~~ 0

0 — 
00 11

and , by assumption, each of the three terms on the r ight  tends to zero. 0

We now adapt these considerations to the proof of s u f f i c i e n c y  in theorem 3. Recall-

ing the ident i f ica t ion between a set K € IC and i ts support funct ion s(p , K ) ,

—10—
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we see that an F € CIR I can s im i l a r l y  be identified with its family of support

functions

F •-+ s(F) = C s(p,F (-) I

U 
where the indexing set is P = { p I I I p I I  = 11. Now

supls(p,F(t))l = I F t II < 11(F) < S

and

sup supts (p,F(t)) — s(p,F(x))l =

I t—x N.6 p

where C
F 

is the modulus of continu ity of F defined in the obvious way . Hence s(F )  E I.

In fact, the collection of all s(F) form a positive, convex cone C in I by virtue

* of the identification

oF + BG ~~~~ ~s(F) + Bs (G) a,~ > 0 -

A IC -linear operator T : crEI(
c
] C(IC ) induces a natural map L : C -* C Via

Ls ( F )  I s (TF )

which obviously satisfies

L (as CF) + Bs (G) 1 = aLs(F) + BLs(G) a,B > 0

In order to apply the proposition and corollary , we need to extend the domain of L to

a subspace of I. Accordingly, let be the span of C (i.e. all finite linear

cornbinaticns of the form I a .s(F.)) and define , for any s(F),
1 1

L [— s ( F ) ] = —Ls (F) (= —s (TF))

With this done, it is straightforward to verify that L : * I is linear . Moreover ,

since F C G (~~~~ a(F) .<0(G), it follows di rect ly  that if T is BC —positive , then L

is positive.

Next we show that is full. Obviously, F~
’
~ ‘—p s(FW ) = 0 ~ 1o~ ~ 

= 0,1 ,2.

Further , 0 is of the form a Ct) = I a .s(p,F . Cx)) . But each SC~ ,F . (x)),
(x) (x) p i i i

U 
• regarded as a function of t, corresponds to a constant set—valued function F(t) F.(x) .

Hence each a € ICx) 0

— 11—
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Note also that, since for any F,G C ~~[ I C )  , U ( F ,G) = 11 s r — s ( G )  II we have

T F
( i )  

* F
W 

=‘ L • a ~ .0 , i = 0,1,2.n f l u  1

It remains to show the required behavior for y. If a = I • . sIT), then we have

(see (4.1))

yCo ,L )  < I o j  y (s (F),L )

so that  it is s u f f i c i e n t  to consider a = s(F). We have

(4.3) y(s(F),L ) = sup supjlL (s(p, F(t)).
0
o I) Ct) - s(p,F(t))I -

U Let us regard t as fixed and consider the constant se t—valued func t ion  F (x )  F i t ) ,

0 < x < l .  Then

(4.4) H(T
~
F
t.
F
t
) = lIL n

(SCP
~
FCt ))

o
0p > - <s (P.F(t)).0a~)II

= sup SUPI IL (s(p,F(t)) 0a I) Ix) — s(p,F (t))l -

Using (4.3) and (4.4), we see that

~YC5(F) s L
n
) ~ ~~~~ HCT F~ ,F~) -

• By the second assumption of theorem 3 and the bound I IF( t )  II < 11(F) < ~~, the right hand

side tends to zero. This concludes the proof of the theorem. 0

The convergence of Bernstein approximation is easily established in this context.

1K -linearity and -positivity obviously hold . Moreover, for i = 0,1,2 ,

B(F C1) ;t) = R ( t’ t) -B which establishes convergence for the ~~~~ Finally , given

any constant F(t) S K, B (F;t) I F ( t )  so that the derived y in each case is zero.

It is equally straightforward to establish convergence of the piece—wise linear

scheme (3.1).

— 12—
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5. Aspects of Bernstein Approximation. In this section we discuss some features of

Bernstein approximation which complement the uniform conv - rgence result. Some have

been alluded to b* fore and are t rue for s imi lar  approximat ion schemes.

We begin with some properties which follow directly from th~ support function

embedding a:d properties of Bernstein approximation in the real—valued case.

Proposition.

Ii) K
1 
C F(t) C K

2
, Vt => K

1 
C Bn

(F;t) C K
2
, Vt.

In particular , 1) Fit) C 5
n~~~

t) C con{U FIt)] Vt.

(ii) F(s) C ( J ) F ( t )  Vs < t ~~~
> B (F;s) C CD)B (F;t) Vs < t— — — n — — n —

(iii) F(~_j_!) 
C (~) [F(s) + F ( t ) ]  Vs ,t

> B (F; ~_±~I C (D) 1 
~~ (F;s) + B (F;t)) Vs,t

• 
~ 

2 — — 2  n a

Property (i) is, of course, a special instance of the positivity property . As we

have seen , this is a natural extension of the real—valued case. One might, however ,

- 
. 

- 
try to argue another type of extension. If fit) > g(t) Vt then the Bernstein

• approximants of these functions share the same ordering . Alternatively, one could say

that non—intersection of graphs is preserved . Accordingly, in the set-valued case, we

might ask whether non—intersection — FCt) fl G(t) = ~i Vt - is maintained for approximants .

The following example , however, shows that this is not generally the case. In the

complex plane , let Fit) = {e
2hlt

) and let G (zj lI z Il < ci. Then, for each t, B (F;t)

is a point, which for t � 0 ,1 is of modulus less than 1. Hence if C 15 sufficiently

close to (but smaller than) unity , Fi t) ~ G(t) = 0 Vt whereas this property fails for

the approximants. It is possible, however , to show that non—intersection is ultimately

preserved in general.

Proposition. Let F(t) fl G(t) = 0 Vt. Then, for n sufficiently large ,

B (F;t) fl B (G;t) = 0 Vt.
U n n

- Proof. Let € = inf inf (II f— q II I f € F ( t ) , g  € G(t)}. Compactness and continuity ensure
t

that c is strictly positive . The assertion then holds for a such that

• £/2 > max{H (F ,B (F :)), }I(G,B (G ;))). 0n n n a

— 1 3— 
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We turn now to the behavior of approximants when juxtap osed with mappings of the

“background space” I~~. If M is a d ~ d matrix, we can define a map taking

- into 1K by K MK = {MKIk C K). The fol lowing easy result is typical.

Proposition. B (MT;t) = MFI (F;t) .

U 

- In particular , Bernstein approximation commutes with projections . Alternatively, let us

consider a continuous one-parameter f ami ly  of matrices M 1, 0 < t < 1 (continuity can be

assumed in any reasonable sense, e.g. in the Euclidean norm) . Then F(t) = M
~
K . for a

- fixed K e IC is an elen ent of aIR ] (one might think, for instance, of a continuous
c c

rotation of a fixed figure). As well as uniform convergence , we have the following .

Proposition. B(M
t
;t)K C B(M

t
X;t).

Proof. As a consequence of the general inclusion (M
1
4-N
2

)K C M 1
K+M

2K (matrix addition

on the l e f t ,  set addition on the r ight) , we have

n a
B CM ;t)K = b . (t )M . K C ~ b . ( t)M . K B (N K:t) . 0
n t 

j=O 
3fl j/r. — 

j=O Jfl J/fl n t

Note incidentally that B(M t; )K also converges uniformly to M .K which suggests

- further comparisons with the convergence of the Bernstein approximants .

An ar ea of particu lar in terest is the behavior of geometric functionals under

Bernstein approximation. For instance, given any functional ~ which satisfies

~CaK +8K ) = cip (K ) + B.p(K ) ,  ct,8 > 0, we have the obvious relation ~~(B (F ;t ) )  = B (~ oF;t).1 2 1 2 — n

Examples are , f or f ixed  p, ~~(K) = sCp , K ) ,  the extent of K in the direction p and

~ (K) = s(p,K) + s (—p, IC) , the width of IC in the direction p. In the plane ,

~ (K) = per (K) = perimeter of K is another example. Here a convenient parameterization

takes p = (cos 6, sin 8) so that the support function may be regarded as a function of
21T

the angie 8 . Then pe r ( K )  = I s(G ,K)d8 (see, e.g. [14]) and
0

n 2,T

per(B CF;t)) = ~ b . (t) f s (8 ,F(j/n))d8 .
j=O J 0

Nonlinear functionals naturally require individual attention. Occasionally classical

considerations can be invoked , as in the following bound for the volume of B (F;t)

—14—

_ _



I
which is a straightforward consequence of the Brunn—Minkowski inequality (see, for

-
~~ 

instance, [71).

I • Proposition. vol B
n
CF;t) [B

n
NVO1 F) 1/d ;t )  1

d

4 In the plane an explicit expression can be displayed for the area functional. With

sufficient smoothness of the support functions

area B (F;t) = 
~ 

b . (t)b~ Ct) 
~2s 

s ( 6,F(j/n))~ r (O,F(k/n))d8
j=O k=O ~ o

where r(8,K) = — j  + I s(O,K) (see the discussion in Ill) on mixed areas)

UI

—15—
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6. Nots .

§1. The 1 rcsent Study was motivated in ~art by earlier work of the author and

colleagues in related areas - in particular , approximation of plane convex Sets 1)6),

- [ 9 ) ) ,  random sets ((31, 1171 ), computational considerations (1151 ), and modelling of

• 
‘
~ tumor growth ([16)).

U 
§2. The Ilausdorff metric ui~ evidently a distance of L type (in the space of

* support functions) . It would be of considerable interest to find an appropriate L
2

formulation.

§3. Theorem 1 has many variants along traditional lines. For instance, uniform

convergence in a subinterval can be asserted under weaker conditions . Moreover , point-wise

convergence rates can be derived for each of the component s(p,F(t)).

Theorem 2 suggests that linear methods may not be natural for approximation in

C[IC1 . C. de Boor has pointed out that this might be expected since the formation of

all point—wise sums in constructing K
1 

+ K
2 

is not mirrored in the structure of a

single , fixed non-convex K (which does not contain all connecting line segments).

U §4. The extended excursion into Korovkin theory for families of functions can perhaps

be avoided by an appeal to the abstract machinery of Banach lattices (see, for instance ,

(12 , esp. V.2)). We have not seen a clear way to do this , and in any case the quantita-

tive formulation given may be of particular use. Although it is not explicitly given in

the text, the following bound seems best possible

H(TF ,F) < •.I ( p ) [ I 1 ( F~~~~~~~) + 11 + YCF ,T)

where

= sup II ITI(t-x) 2B)) (xl II

and

y(F,T) = sup{11(~~~,G) G( x ) I Fit), 0 < x  < 1, t fixed)

Condition (ii) of theorem 3 has the equivalent (but apparentlj weaker) formulation

in the plane (d=2)

-16—



sup(11 (T F,F) I F(t) x, l I x Il = 1 , K = a point,

• 
‘ line segment, or triangle) 0

We indicate briefly why this is so. Given any K , we can approximate it in the Hausdorff U

- 
. metric arbitrarily well with a finite sum of the form

K = q + I ci .~~. (H(K ,K )  =

where q is a point, the are either line segments or triangles containing 0,

U II &II = 1 in each case, and a . > 0 (see, for instance, Yaglom and Boltyanskii [19)).

Then

• H (TK,K) < HCTK ,TK ) + FI(TK ,K ) + H (K ,K)
— C C C C

* The last term equals C and the first is bounded above by CI ITB I I . As for the second
.1

term, we have the bound

H(TK ,K ) < H(Tq,q) + I a.H(Th.,~~.), U C C — 1 1

T 
< H(Tq ,q) + sup{H (Th,~ ) I II~ Il = 1) . I a .  -

Now comparing perimeters of K and K we have

per(K ) = 1 a . per (1~.) < per(K) + 2ir~

Since 0 €  & and I IAJ I  = 1, we have pen t,.) > ~~~~~ = 2 Cachieved when A . looks
1 1 1

like a unit vector) and so

I a . < -
~~ [per (K) + 25C} < 

~~ (2n IIKII + 2ir€ J = sE II x I1 + rI

As for the first term , 0 € K — q so that I q Il  < II K lI and hence for II~II > 0, we have

HCTq ,q) = Il~ Il

~~. IlKlt sup {F~C’r~,~ I Il~ Il = 1)

(the trivial case II~II = 0 is, of course, included in the final inequality )

Passing to the limit as c ~
. 0, we then have

}ICTK ,K) < 11 + i r il IKI l  
. sup{H (TA ,t,) I II~ II = 1 , A = point,

line segment, or triangle) -

—17— 
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